Все про уход за автомобилем

Подбираем зарядное устройство для пальчиковых аккумуляторов. Методика тестирования аккумуляторов и батареек Тренировка NiMH элементов

Началось все с того, что моя фотомыльница наотрез отказалась работать со свежевынутыми из зарядного устройства аккумуляторами - четырьмя NiMH размера АА. Их бы взять, как обычно, да выбросить. Но почему-то в этот раз любопытство возобладало над здравым смыслом (или это может жаба подала голос), и захотелось понять - а нельзя ли из этих батарей выдавить еще хоть чего-нибудь. Фотоаппарат весьма охоч до энергии, но ведь есть и более скромные потребители - мышки беспроводные или клавиатуры, например.

Собственно параметров, интересных потребителю, два - емкость батареи и ее внутреннее сопротивление. Возможных манипуляций тоже немного - разрядить да зарядить. Измеряя в процессе разряда ток и время можно оценить емкость аккумулятора. По разнице напряжения аккумулятора на холостом ходу и под нагрузкой можно оценить внутреннее сопротивление. Повторив цикл разряд-заряд (т. е. выполнив «тренировку») несколько раз, можно понять имеет ли вообще это действо смысл.

Соответственно сформировался такой план - делаем управляемые разрядник и зарядник с возможностью непрерывного измерения параметров процесса, производим над измеренными величинами простые арифметические действия, повторяем процесс нужное число раз. Сравниваем, делаем выводы, выбрасываем наконец аккумуляторы.

Измерительный стенд
Сплошной сборник велосипедов. Состоит из аналоговой части (на схеме ниже) и микроконтроллера. В моем случае интеллектуальной частью был ардуино, хотя это совершенно не принципиально - лишь бы был необходимый набор входов/выходов.

Сделан стенд был из того, что нашлось в радиусе трех метров. Если кому-то захочется повторить, то вовсе не обязательно в точности следовать схеме. Выбор параметров элементов может быть весьма широким, далее я это немного прокомментирую.

Блок разряда представляет собой управляемый стабилизатор тока на ОУ IC1B (LM324N) и полевом транзисторе Q1. Транзистор практически любой, лишь бы хватило допустимых напряжений, токов и рассеиваемой мощности. А они тут все небольшие. Резистор обратной связи и одновременно часть нагрузки (вместе с Q1 и R20) для аккумулятора - R1. Его максимальная величина должна быть такой, чтобы обеспечить требуемый максимальный ток разряда. Если исходить из того, что разряжать аккумулятор можно до 1 В, то для обеспечения тока разряда, например, в 500 мА резистор R1 не должен быть больше 2 Ом. Управляется стабилизатор трехбитным резистивным ЦАП (R12-R17). Тут расчет такой - напряжение на прямом входе ОУ равно напряжению на R1 (которое пропорционально току разряда). Меняем напряжение на прямом входе - меняется ток разряда. Для масштабирования выхода ЦАП к нужному диапазону имеется подстроечный резистор R3. Лучше, чтобы он был многооборотный. Номиналы R12-R17 могут быть любыми (в районе десятков килоом), главное, чтобы выполнялось соотношение их величин 1/2. Особой точности от ЦАП не требуется, поскольку ток разряда (напряжение на R1) в процессе измеряется непосредственно инструментальным усилителем IC1D. Его коэффициент усиления равен K=R11/R10=R9/R8. Выход подается на АЦП микроконтроллера (А1). Изменением номиналов R8-R11 усиление можно подогнать к желаемому. Напряжение на батарее измеряется вторым усилителем IC1C, K=R5/R4=R7/R6. Зачем управление током разряда? Дело тут в основном вот в чем. Если разряжать постоянным большим током, то ввиду большого внутреннего сопротивления у изношенных батарей минимально допустимое напряжение 1 В (а другого ориентира для прекращения разряда нет) будет достигнуто раньше, чем аккумулятор на самом деле разрядится. Если разряжать постоянным малым током, то процесс растянется слишком надолго. Поэтому разряд ведется ступенчато. Восьми ступеней мне показалось достаточно. Если охота больше/меньше, то можно изменить разрядность ЦАП. Кроме того, включая-выключая нагрузку, можно прикинуть внутреннее сопротивление аккумулятора. Думаю, что дальнейших пояснений алгоритм работы контроллера при разряде не требует. По окончании процесса Q1 оказывается заперт, батарея полностью отключается от нагрузки, а контроллер включает блок заряда.

Блок заряда. Тоже стабилизатор тока, только неуправляемый, зато отключаемый. Ток задается источником опорного напряжения на IC2 (2.5 В, точность 1% согласно даташиту) и резистором R21. В моем случае ток заряда был классическим - 1/10 от номинальной емкости аккумулятора. Резистор обратной связи - R20. Источник опорного напряжения можно использовать любой другой - на ваш вкус и наличие деталей. Транзистор Q2 работает в более жестком режиме, чем Q1. Ввиду заметной разницы между напряжением Vcc и напряжением батареи на нем рассеивается заметная мощность. Это плата за простоту схемы. Но радиатор спасает положение. Транзистор Q3 служит для принудительного запирания Q2, т. е. для отключения блока заряда. Управляется сигналом 12 микроконтроллера. Еще один источник опорного напряжения (IC3) нужен для работы АЦП контроллера. От его параметров зависит точность измерений нашего стенда. Светодиод LED1 - для индикации состояния процесса. В моем случае он не горит в процессе разряда, горит при заряде и мигает, когда цикл закончен.
Напряжение питания выбирается таким, чтобы обеспечить открытие транзисторов и работу их в нужных диапазонах. В данном случае у обоих транзисторов напряжение отпирания затвора довольно велико - порядка 2-4 В. Кроме того, Q2 «подперт» напряжением батареи и R20, поэтому отпирающее напряжение на затворе стартует примерно от 3,5-5,5 В. В свою очередь LM323 не может поднять напряжение на выходе выше Vcc минус 1,5 В. Поэтому Vcc должно быть достаточно велико и в моем случае равно 9 В.

Алгоритм управления зарядом ориентировался на классический вариант контроля момента начала падения напряжения на батарее. Однако на деле оказалось все не совсем так, но об этом позже.
Все измеряемые величины в процессе «исследований» писались в файл, потом производились расчеты и строились графики.

Думаю, что с измерительным стендом все ясно, поэтому перейдем к результатам.

Результаты измерений
Итак, имеем заряженные (но неработающие) батареи, которые разряжаем и измеряем запасенную емкость, а заодно и внутреннее сопротивление. Выглядит это примерно так.

Графики в осях время, часы (X) и мощность, Вт (Y) для лучшей и худшей из батарей. Видно, что запасенная энергия (площадь под графиками) существенно разная. В числовом выражении измеренная емкость аккумуляторов составила 1196, 739, 1237 и 1007 мА*ч. Не густо, учитывая, что номинальная емкость (которая указана на корпусе) - 2700 мА*ч. И разброс весьма велик. А что же внутреннее сопротивление? Оно составило 0.39, 0.43, 0.32 и 0.64 Ом соответственно. Ужасно. Понятно почему мыльница отказывалась работать - батареи просто не в состоянии отдать большой ток. Ну что ж, приступим к тренировке.

Цикл первый. Опять отдаваемые мощности лучшей и худшей батареи.

Прогресс виден невооруженным глазом! Числа это подтверждают: 1715, 1444, 1762 и 1634 мА*ч. Внутреннему сопротивлению тоже похорошело, но очень неравномерно - 0.23, 0.40, 0.1, 0.43 Ом. Казалось бы есть шанс. Но увы - дальнейшие циклы разряда/заряда ничего не дали. Значения емкости, как и внутреннего сопротивления, изменялись от цикла к циклу в пределах около 10%. Что лежит где-то недалеко от пределов точности измерений. Т.е. длительная тренировка, во всяком случае для моих аккумуляторов, ничего на дала. Но зато стало ясно, что батареи сохранили больше половины емкости и вполне еще поработают на малом токе. Хоть какая-то экономия в хозяйстве.

Теперь хочу немножко остановиться на процессе заряда. Возможно мои наблюдения будут полезны кому-то, кто соберется конструировать интеллектуальное зарядное устройство.
Вот типичный график заряда (слева шкала напряжения на аккумуляторе в вольтах).

После начала заряда наблюдается провал напряжения. В разных циклах он может быть больше или меньше по глубине, немного разной длительности, иногда отсутствует. Далее в течение примерно 10 часов идет равномерный рост и затем выход почти на горизонтальное плато. Теория гласит, что при малом токе заряда не наблюдается падение напряжения в конце заряда. Я набрался терпения и все-таки дождался этого падения. Оно мало (на графике на глаз почти и не заметно), ждать его нужно очень долго, но оно всегда есть. После десяти часов заряда и до спада напряжение на батарее хоть и растет, но крайне незначительно. На итоговом заряде это почти не сказывается, каких-то неприятных явлений типа нагрева батареи не наблюдается. Таким образом при конструировании слаботочных зарядных устройств снабжать их интеллектом никакого смысла нет. Достаточно таймера на 10-12 часов, причем никакой особой точности при этом не требуется.

Однако такая идиллия была нарушена одним из элементов. Примерно через 5-6 часов заряда возникали весьма заметные колебания напряжения.

Сначала я было списал это на конструктивный недостаток моего стенда. На фото видно, что собрано все было навесным монтажом, а контроллер подключен довольно длинными проводами. Однако повторные эксперименты показали, что такая ерунда стабильно возникает с одним и тем же аккумулятором и никогда не возникает с другими. К своему стыду причину такого поведения я не нашел. Тем не менее (и на графике это хорошо видно) среднее значение напряжение растет так, как надо.

Эпилог

В итоге имеем четыре аккумулятора, которым точными научными методами найдена экологическая ниша. Имеем разочарование в возможностях процесса тренировки. И имеем один необъясненный эффект, возникающий при заряде.
На очереди батарейка побольше - автомобильный аккумулятор. Но там нагрузочные резисторы на пару порядков мощнее надо. Где-то едут по просторам Евразии.

На этом все. Спасибо за внимание.

Большинство современных гаджетов – это мобильные устройства, обладающие компактными габаритами и способные работать в автономном режиме. Для этого они оснащены встроенными системами питания, источников энергии в которых является аккумулятор. Современный рынок предлагает широкий выбор таких элементов.

Но наибольшее распространение получили небольшие пальчиковые аккумуляторы. Однако они обладают ограниченным ресурсом и требуют регулярной подзарядки. Для этого используют специальные устройства, подключаемые к стационарной электросети. Один из таких приборов – устройство для заряда пальчиковых аккумуляторов. Оно представлено на рынке различными моделями, попробуем выбрать одну из самых лучших.

Что представляет собой устройство

Это электронный прибор, имеющий компактные габариты. Он служит для заряда батареи энергией от внешнего источника. Обычно это сеть переменного тока.

Схема зарядного устройства для Li Ion аккумуляторов достаточно простая и поэтому прибор может быть собран самостоятельно. Он состоит из следующих элементов:

  • Преобразователя напряжения;
  • Выпрямителя;
  • Стабилизатора;
  • Устройства контроля за процессом зарядки.

В качестве преобразователя обычно используется трансформатор, но он может быть заменен импульсным блоком питания. Для контроля за работой зарядки применяются средства индикации, такие как светодиодный амперметр.

Где применяются зарядка для пальчиковых аккумуляторов

Основной сферой использования таких приборов являются мобильные гаджеты. Обычно они работают на различных видах аккумуляторов. Для их зарядки и применяются эти устройства.

Но так как батареи могут быть различного типа, то и характеристики зарядного устройства для 18650 Li Ion аккумуляторов подбираются в соответствии с их рабочим напряжением и номинальной емкостью.

Конструктивные особенности прибора

Зарядное устройство представляет собой небольшой гаджет, приспособленный для работы с конкретными источниками энергии. Можно встретить в продаже и универсальные приборы, рассчитанные на переподготовку как одного, так и нескольких аккумуляторов.

Но так как наибольшей популярностью пользуются пальчиковые элементы, то и устройств для их зарядки выпускается больше всего. Они рассчитаны на работу с аккумуляторами различных габаритов:

В комплекте с некоторыми моделями ЗУ поставляются сменные платы, рассчитанные на батареи различных типов. Новейшие разработки в этой отрасли предполагают оснащение прибора адаптером, что позволяет воспользоваться им в любой стране. Но некоторые по-прежнему предпочитают собирать зарядное устройство для пальчиковых аккумуляторов своими руками.

Смотрим видео, виды устройств, принцип работы и аспекты подбора:

Подключение к сети ЗУ осуществляется при помощи шнура. Но есть образцы, подключаемые напрямую. Их использование не всегда удобно.

Принцип работы устройства

Основным назначением такого прибора является переподготовка источника тока, после того как будет исчерпан ресурс их емкости. Этот процесс в современных ЗУ осуществляется с использованием трех режимов:

  • быстрого заряда;
  • разряда;
  • подзарядки.

Назначение первого пункта понятно – он позволяет привести аккумулятор в рабочее состояние. В то же время два других у непрофессионалов вызывают вопросы. Однако без них зарядка батареи может не состояться.

Именно эти режимы необходимы для устранения таких эффектов, как:

  • саморазряд;
  • эффект памяти.

Первый получается в случае длительного неиспользования аккумулятора. При этом часто возникает загрязнение электролита или неустойчивость электродов. Эффект памяти связан с технологией изготовления электродов. И чтобы источник тока не вышел из строя преждевременно не стоит подзаряжать его при наличии остаточной емкости. Поэтому в функции зарядного устройства и включен режим разрядки.

Критерии выбора ЗУ

Приобретение такого прибора имеет свою специфику. Одним из самых важных факторов является порядок установки батарей. Чтобы не ошибиться с полярностью и учесть все имеющиеся особенности необходимо внимательно изучить инструкцию и рассмотреть рисунки с вариантами расположения элементов. Это поможет выбрать необходимую вам модель.

Например, используя зарядку для 4 элементов можно ошибиться только с полярностью. Но в то же время приобретая прибор для 2 батарей придется учитывать много особенностей их установки.

Смотрим видео, критерии выбора прибора зарядки:

Специалисты советуют приобретать ЗУ того же производителя, что и аккумуляторы.

Выбирая гаджет следует обращать внимание и на способ его подключения к розетке. Наиболее удобными считаются те в которых используется шнур. Подключаемые без него часто не обеспечивают надежную установку.

Важным параметром является и время заряда. Приобретая универсальное зарядное устройство для Li-Ion аккумуляторов следует учитывать, что в документации приводятся расчетные значения. При этом реальное время обычно несколько больше и это связано со спецификой работы устройства.

Кроме перечисленных выше параметров существует целый перечень других, которые не менее важны при выборе:

  • Количество устанавливаемых батарей;
  • Типоразмер;
  • Особенности их расположения;
  • Наличие защиты от перегрева и перенапряжения;
  • Автоматическое отключение при полном заряде.

Однако следует учитывать и тот факт, что приборы с большим количеством функций стоят дороже. И в некоторых случаях можно обойтись самым простым, но в то же время дешевым образцом.

Лучшее устройство для зарядки для пальчиковых аккумуляторов

Модель La Crosse BC-700 и NiMN.

Большой ассортимент ЗУ заставляет основательно подходить к выбору. Продукции какой компании отдать предпочтение? Выбрать модель от европейского производителя?

Как правило, они отличаются высоким качеством, но и стоят такие изделия дорого. Зарядные устройства китайского производства – это чаще всего вещь, не подлежащая ремонту и не отличающаяся надежностью.

Хотя и среди этих изделий можно встретить качественные и недорогие модели. Есть неплохие зарядки и отечественной разработки. Они по многим параметрам не уступают зарубежной продукции, но в то же время цена на них значительно ниже.

Какую из моделей выбрать – зависит от конкретных требований покупателя. И чтобы сделать это было проще мы рассмотрим характеристики устройств от различных производителей.

Смотрим видеообзор о модели Robition Smart S100:

Начнем с модели под маркой Robition Smart S100. Это продукция одной из ведущих отечественных компаний. Она представляет собой зарядное устройство с двумя каналами, оснащенное кнопкой разряда. В модельный ряд этого производителя входят приборы, отличающиеся по своему функционалу.

Например, гаджет Ecocharger хотя и не наделе возможностью разрядки аккумуляторов, но способен зарядить даже одноразовую щелочную батарейку. Причем выполнять это процедуру с одним элементом можно до 5 раз. Подключение этой функции осуществляется специальным переключателем, расположенным на боковой панели корпуса.

Кроме этого прибор относится к 4-х канальным. Это значит, что он способен отслеживать уровень заряда каждого аккумулятора по отдельности. Готовность указывается светодиодным индикатором. Стоимость такого прибора не превышает 20 долларов.

Более дорогими являются зарядные устройства марки NiMN. Они обладают более широким функционалом и способны разряжать батарею для восстановления ее емкости. Приборы, также, как и предыдущие способны контролировать уровень заряда каждого отдельного элемента. Использование этого устройства позволяет осуществлять восстановление аккумулятора быстро за счет высокого тока зарядки. Цены на приборы этой марки составляют от 50 до 70 долларов.

Модель зарядки La Crosse BC-700

Как известно, Ni-Cd и Ni-MH аккумуляторы необходимо доразряжать до 0.9-1.0в перед началом зарядки - это позволит значительно увеличить их срок эксплуатации. Где-нибудь в радиотелефоне аккумуляторы ещё долго будут работать, даже потеряв часть емкости и при значительном увеличении внутреннего сопротивления - ведь само устройство потребляет очень немного. В таких случаях важнее удобство и простота эксплуатации, а если совсем "умрёт" аккумулятор - проще купить новый, тем более, что стоимость их невелика. Но есть ряд приборов, где аккумуляторы должны выдавать большие кратковременные разрядные токи, например - фотокамеры со вспышкой. В таких устройствах аккумулятор с увеличенным внутренним сопротивлением откажется нормально работать, хотя индикатор заряда будет сигнализировать о полном заряде. А если учесть, что стоимость таких специализированных аккумуляторов достаточно велика, то наличие разрядного устройства становится просто необходимым. Промышленностью выпускается большое количество всевозможных зарядных устройств для стандартных "пальчиковых" аккумуляторов, но чаще всего эти устройства не имеют функции доразряда. А те, которые имеют, подчас стоят совсем несуразных денег, поэтому пришлось сделать разрядное устройство самому. При разработке была поставлена задача получить разряд аккумулятора до рекомендуемого производителем напряжения в 0.9в, автоматическое его отключение от схемы после окончания разряда а также световую индикацию процессов разряда и окончания разряда. Так как в моём аппарате используются два идентичных аккумулятора, то и схему разряда пришлось делать двухканальной. Собственно схема:



Принципы работы.


Основа схемы - сдвоенный компаратор напряжения LM393. Он обеспечивает сравнение напряжения на разряжаемом аккумуляторе с опорным напряжением и управление релейной схемой отключения аккумулятора от нагрузки. Рассмотрим логику работы одного канала схемы: (второй - абсолютно идентичен) После установки аккумуляторного элемента в держатель и подачи питания от внешнего блока питания +12в., на неинвертирующем входе компаратора устанавливается напряжение, соответствующее напряжению на ненагруженном аккумуляторе - обычно оно больше, чем 1.2в. и превышает опорное напряжение, которое устанавливается делителем на выводах 2 и 6 компаратора. При этом ключ на выходе компаратора закрыт, соответственно - на базы VT1 или VT2 подано напряжение смещения от источника питания. В таком состоянии устройство может находиться сколь угодно долго, так как разрядом аккумулятора через вход компаратора можно пренебречь. Для начала разряда нажимается одна из кнопок "Старт разряда", например SB1. При этом через контакты кнопки подается напряжение питания на реле и так как VT1 открыт положительным смещением, реле срабатывает, своим нормальноразомкнутым контактом шунтируя кнопку. Таким образом и после отпускания кнопки SB1 реле остаётся во включенном состоянии (самоблокировка реле). При этом другой группой контактов реле подключает параллельно аккумулятору нагрузку в виде резистора, которая и обеспечивает разряд аккумулятора. Также начинает светиться светодиод HL1, который индицирует процесс разряда. Схема будет находиться в данном стабильном состоянии до тех пор, пока напряжение на аккумуляторе не упадёт ниже величины в 0.9в. Точный порог срабатывания компаратора устанавливается подстроечным резистором R4., при этом ключ на выходе компаратора открывается, VT1 - закрывается, реле отпускает, отключая нагрузку от аккумулятора. HL1 гаснет, а HL3 - загорается, индицируя окончение процесса разряда. В этом состоянии схема также может находиться неопределённо долго, так что устройство вполне можно оставлять без присмотра, не опасаясь переразряда аккумулятора. На ночь, например.

Детали и конструкция.


Никаких особенных требований к конструктиву и деталям не предъявляется. В случае, если питание устройства осуществляется от хорошо стабилизированного источника питания, стабилитрон VD1 и R5 можно не устанавливать. После настройки порога срабатывания подстроечный резистор можно заменить на постоянный соответствующего номинала для уменьшения габаритов и обеспечения лучшей стабильности. Реле - любые маломощные с двумя группами контактов на переключение. Вполне подойдут РЭС60. VT1 и VT2 - любые npn. Светодиоды - любые,HL1 и HL2 - красные, HL3 и HL4 - зелёные. Кнопки - любые без фиксации. Так как компаратор потребляет очень небольшой ток - менее 1мА, то основная нагрузка блока питания - реле. В любом случае блок питания может быть очень маломощным. Номиналы нагрузочных резисторов R1 и R2 выбираются, исходя из ёмкости используемых аккумуляторов. Они должны обеспечивать разрядный ток порядка 1/20-1/30 от ёмкости. Например, при использовании аккумуляторов на 2000мА/ч, нагрузка должна обеспечивать разрядный ток в 70-100мА. При напряжении аккумулятора в 1.2в такой ток обеспечит резистор в 15 Ом. Резисторы R1 и R2 должны быть мощностью в 1 ватт. Пример монтажа и внешнего вида устройства представлен на фото.


Этой статьёй мы открываем новое для нашего сайта направление: тестирование аккумуляторов и гальванических элементов (или, выражаясь простым языком, батареек).

Несмотря на то, что всё большую популярность приобретают литий-ионные аккумуляторы, специфичные для каждой конкретной модели устройства, рынок стандартных элементов питания общего назначения до сих пор очень велик – от них питается масса различных изделий, начиная от детских игрушек и заканчивая недорогими фотоаппаратами и профессиональными фотовспышками. Велик и ассортимент этих элементов – батарейки и аккумуляторы разных типов, емкостей, размеров, торговых марок, качества изготовления...

На первых порах мы не ставим перед собой цель объять всё богатство элементов питания – мы ограничимся лишь наиболее стандартными и распространёнными из них: цилиндрическими батарейками и никелевыми аккумуляторами.

Данная же статья призвана познакомить вас с некоторыми базовыми понятиями, касающимися исследуемых нами элементов питания, а также с методикой тестирования и используемым нами оборудованием. Впрочем, многие теоретические и практические вопросы мы будем обсуждать и в последующих статьях, посвящённых уже конкретным элементам питания – тем более, что делать это на "живых примерах" много удобнее и нагляднее.

Типы аккумуляторов и гальванических элементов

Батарейки с солевым электролитом

Батарейки с солевым электролитом, они же цинк-углеродные (впрочем, в отличие от щелочных батареек, на упаковках солевых производители обычно просто не указывают их химию) – самые дешёвые химические источники тока из имеющихся в продаже: стоимость одной батарейки колеблется от четырёх-пяти до восьми-десяти рублей, в зависимости от марки.


Представляет собой такая батарейка цинковый цилиндрический контейнер (служащий одновременно и корпусом, и "минусом" батарейки), в центре которого находится угольный электрод ("плюс"). Вокруг анода размещён слой диоксида марганца, а оставшееся пространство между ним и стенками контейнера заполнено пастой из хлорида аммония и хлорида цинка, разведённых в воде. Состав этой пасты может варьироваться: в маломощных батарейках в ней доминирует хлорид аммония, а в более ёмких (обычно обозначаемых производителями как "Heavy Duty") – хлорид цинка.

При работе батарейки цинк, из которого сделан её корпус, постепенно окисляется, в результате чего в нём могут появиться прорехи – тогда электролит из батарейки вытечет, что может привести к порче устройства, в которое она установлена. Впрочем, такие проблемы были характерны в основном для отечественных батареек времён существования СССР, современные же надёжно упаковываются в дополнительную внешнюю оболочку и "текут" очень редко. Тем не менее, надолго оставлять в устройстве севшие батарейки не стоит.

Как уже упоминалось выше, химический состав электролита солевых батареек может немного варьироваться – в "мощной" версии используется электролит с преобладанием хлорида цинка. Впрочем, слово "мощный" применительно к ним можно писать разве что в кавычках – ни одна из разновидностей солевых батареек на сколь-нибудь серьёзную нагрузку не рассчитана: в фонаре их хватит на четверть часа, а в фотоаппарате может не хватить даже на выдвижение объектива. Удел солевых батареек – пульты дистанционного управления, часы да электронные термометры, то есть устройства, энергопотребление которых укладывается в единицы, в крайнем случае в десятки миллиампер.

Батарейки с щелочным электролитом

Следующий тип батареек – щелочные, или марганцевые батарейки. Некоторые не слишком грамотные продавцы и даже производители называют их "алкалиновыми" – это слегка искажённая калька с английского "alkaline", то есть "щёлочь".


Цены на щелочные батарейки варьируются от десяти до сорока-пятидесяти рублей (впрочем, большинство их типов укладываются в диапазон до 25 рублей, выделяются только отдельные модели повышенной мощности), а отличить от солевых их можно по обычно присутствующей в том или ином виде надписи "Alkaline" на упаковке (а иногда – и прямо в названии, например, "GP Super Alkaline" или "TDK Power Alkaline").

Отрицательный полюс щелочной батарейки состоит из цинкового порошка – по сравнению с цинковым корпусом солевых элементов, использование порошка позволяет увеличить скорость протекания химических реакций, а значит, и отдаваемый батарейкой ток. Положительный полюс – из диоксида марганца. Основным же отличием от солевых батареек является тип электролита: в щелочных в его качестве используется гидроксид калия.

Щелочные батарейки хорошо подходят для устройств с энергопотреблением от десятков до нескольких сотен миллиампер – при ёмкости порядка 2...3 А*ч они обеспечивают вполне разумное время работы. К сожалению, есть у них и существенный минус: большое внутреннее сопротивление. Если нагрузить батарейку действительно большим током, её напряжение сильно просядет, а значительная часть энергии будет расходоваться на нагрев самой батарейки – в результате эффективная ёмкость щелочных батареек сильно зависит от нагрузки. Скажем, если при разряде током 0,025 А нам удастся получить от батарейки 3 А*ч, то при токе 0,25 А реальная ёмкость упадёт уже до 2 А*ч, а при токе 1 А – и вовсе ниже 1 А*ч.

Тем не менее, какое-то время щелочная батарейка может работать и при большой нагрузке, просто это время сравнительно невелико. Скажем, если на солевых батарейках современный цифровой фотоаппарат может даже не включиться, то одного комплекта щелочных ему хватит на полчаса работы.

Кстати, если уж вы вынуждены использовать в фотоаппарате щелочные батарейки – купите сразу два комплекта и периодически меняйте их местами, это позволит немного продлить их жизнь: если разряженной большим током батарейке дать немного "отлежаться", она частично восстановит заряд и сможет проработать ещё немного. Минут пять.

Литиевые батарейки

Последний из широко распространённых типов батареек – литиевые. Как правило, они рассчитаны на напряжение, кратное 3 В, поэтому большинство типов литиевых батареек с полуторавольтовыми солевыми и щелочными не взаимозаменяемы. Такие батарейки широко используются в часах, а также – реже – в фототехнике.


Впрочем, существуют и литиевые батарейки на напряжение 1,5 В, выполненные в стандартных форм-факторах АА и ААА – их можно использовать в любой технике, рассчитанной на обычные солевые или щелочные батарейки. Основное преимущество литиевых батареек заключается в меньшем внутреннем сопротивлении по сравнению со щелочными: их ёмкость мало зависит от тока нагрузки. Поэтому, хотя при малом токе что щелочная, что литиевая батарейки имеют одинаковую ёмкость 3 А*ч, если поставить их в цифровой фотоаппарат, потребляющий 1 А, то щелочные "умрут" минут через тридцать, а вот литиевые проживут почти три часа.

Минусом литиевых батареек является высокая стоимость: мало того, что дорог сам литий, так ещё и в связи с опасностью его воспламенения при попадании воды конструкция батарейки оказывается заметно сложнее по сравнению с щелочными. В результате одна литиевая батарейка стоит 100-150 рублей, то есть в три-пять раз дороже очень хорошей щелочной. Примерно столько же стоит Ni-MH аккумулятор, обладающий сходными с литиевыми батарейками разрядными характеристиками, но способный пережить несколько сотен циклов заряд-разряд – поэтому покупка литиевых батареек оправдана лишь в том случае, когда вам негде, некогда или нечем зарядить обычные аккумуляторы.

Да, раз уж зашла речь о циклах заряда, необходимо сказать, что пытаться заряжать литиевые батарейки категорически нельзя! Если обычная щелочная или солевая батарейка при попытке её зарядить может, как максимум, просто вытечь, то герметичные литиевые батарейки при заряде взрываются.

Также, помимо хороших разрядных характеристик, у литиевых батареек есть ещё два преимущества, как правило, не очень существенных: долговечность (допустимый срок хранения достигает 15 лет, при этом батарейка потеряет всего 10 % ёмкости) и способность работать при отрицательных температурах, когда у солевых и щелочных батареек попросту замерзает электролит.

Никель-кадмиевые (Ni-Cd) аккумуляторы

Основной же альтернативой батарейкам являются аккумуляторы – источники тока, химические процессы в которых обратимы: при подключении аккумулятора к нагрузке они идут в одном направлении, а при приложении к нему напряжения – в обратном. Таким образом, если батарейку после использования приходится выбрасывать и приобретать новую, то аккумулятор можно зарядить до его полной (или почти полной) исходной ёмкости.

Рассматривать мы будем аккумуляторы, используемые в лёгкой бытовой электронной аппаратуре – поэтому тяжёлые (и в прямом, и в переносном смысле) свинцово-кислотные аккумуляторы, встречающиеся в автомобилях, блоках бесперебойного питания и других устройствах с большим энергопотреблением и без особых ограничений на вес и габариты, сразу остаются за бортом нашей сегодняшней статьи. А вот различным типам никелевых аккумуляторов внимания мы уделим много больше...

Первые никелевые – точнее говоря, никель-кадмиевые – аккумуляторы были созданы шведским учёным Вальдемаром Юнгером (Waldmar Jungner) аж в 1899 году, однако на тот момент были относительно дороги, да к тому же не являлись герметичными: при зарядке аккумулятор выделял газ. Лишь в середине прошлого века удалось создать никель-кадмиевую батарею с замкнутым циклом: выделяющиеся при зарядке газы поглощались самим же аккумулятором.

Никель-кадмиевые аккумуляторы надёжны и долговечны (их можно хранить до пяти лет, а заряжать – при правильном использовании – до 1000 раз), хорошо работают при низких температурах и легко выдерживают большие токи разряда, могут заряжаться как малыми, так и большими токами.

Минусов у них, впрочем, тоже немало. Во-первых, относительно маленькая плотность энергии (то есть отношение ёмкости элемента к его объёму), во-вторых, заметный ток саморазряда (после нескольких месяцев хранения аккумулятор перед использованием потребуется заново зарядить), в-третьих, использование в конструкции ядовитого кадмия, и, в-четвёртых, эффект памяти.

На последнем стоит остановиться подробнее, так как при разговоре об аккумуляторах мы его ещё не раз вспомним. Эффект памяти является следствием нарушения внутренней структуры аккумулятора: в нём начинают расти кристаллы, уменьшающие эффективную поверхность и, соответственно, ёмкость аккумулятора. Своё название эффект получил из-за того, что особенно быстро кристаллы растут при неполной разрядке аккумулятора: он как бы помнит, до какого уровня его разряжали в прошлый раз – если аккумулятор был разряжен, скажем, только на 25 %, то очередная зарядка восстановит его ёмкость не до 100 %, а меньше. Для борьбы с эффектом памяти аккумулятор рекомендуется перед зарядкой разряжать полностью – это разрушает образующиеся кристаллы и восстанавливает ёмкость аккумулятора. Среди доступных типов аккумуляторов именно никель-кадмиевые наиболее подвержены эффекту памяти.

Тем не менее, в некоторых случаях использование никель-кадмиевых аккумуляторов оправдано и сейчас – благодаря низкой стоимости, долговечности и возможности зарядки при низких температурах без отрицательных последствий для аккумулятора.

Никель-металлгидридные (Ni-MH) аккумуляторы

Несмотря на близкое соседство на полках магазинах, в историческом плане между Ni-Cd и Ni-MH аккумуляторами лежит пропасть: последние были разработаны лишь в 1980-х годах. Интересно, что изначально исследовалась возможность хранения водорода для никель-водородных батарей, применяемых в космической технике, но в результате мы получили и один из самых распространённых в быту типов аккумуляторов.

В отличие от никель-кадмиевых батарей, никель-металлгидридные не содержат тяжёлых металлов, а значит, безвредны для окружающей среды и не требуют специальной переработки при утилизации. Впрочем, это далеко не единственный их плюс: с точки зрения потребителей, то есть нас с вами, куда важнее, что при тех же размерах Ni-MH аккумуляторы имеют в два-три раза большую ёмкость – для наиболее распространённых аккумуляторов формата AA она доходит уже до 2500-2700 мА*ч против 800-1000 мА*ч у никель-кадмиевых.

Более того, Ni-MH аккумуляторы ещё и практически не страдают от эффекта памяти. Точнее говоря, производители год за годом уменьшают его влияние – и поэтому, хотя теоретически эффект присутствуют и в Ni-MH аккумуляторах, на практике у современных моделей он незначителен. Впрочем, мы не будем полагаться во всём на производителей и в одной из наших следующих статей попробуем сами оценить влияние эффекта памяти.

К сожалению, у Ni-MH аккумуляторов есть и свои проблемы. Во-первых, они имеют больший ток саморазряда (впрочем, об этом мы ещё раз поговорим чуть ниже) по сравнению с Ni-Cd, во-вторых, хотя число циклов перезарядки также может достигать 1000, падение ёмкости аккумулятора может наблюдаться уже после 200-300 циклов, в-третьих, слишком большие разрядные токи и зарядка при низких температурах заметно сокращают жизнь аккумулятора.

Тем не менее, по совокупности характеристик – стоимости, надёжности, ёмкости, простоте обслуживания – на данный момент Ni-MH аккумуляторы являются одними из лучших, что и обусловило их применение в огромной массе бытовых устройств.

В последнее время в продаже появились также так называемые "Ready To Use" ("готовы к использованию") Ni-MH аккумуляторы. От обычных они отличаются малым током саморазряда – производитель уверяет, что за полгода аккумулятор потеряет не более 10 % ёмкости, а за год – не более 15 % (для сравнения, обычный Ni-MH аккумулятор за месяц сядет на 20...30 %, а за год – в ноль). Отсюда и название: будучи заряженными ещё производителем, эти аккумуляторы не успеют полностью разрядиться до того, как вы купите их в магазине, а значит, их можно будет использовать без предварительной зарядки, сразу после покупки. Минусом таких аккумуляторов является меньшая ёмкость – элемент формата AA имеет ёмкость 2000...2100 мА*ч против 2600...2700 мА*ч для обычных Ni-MH аккумуляторов.

Зарядные устройства для Ni-Cd и Ni-MH аккумуляторов

Принципы заряда Ni-Cd и Ni-MH аккумуляторов во многом схожи – по этой причине современные зарядные устройства, как правило, поддерживают сразу оба типа. Методы же заряда и, соответственно, типы зарядных устройств можно разделить на четыре группы. При этом во всех случаях мы будем указывать зарядный ток через ёмкость аккумулятора: например, рекомендация заряжать током величиной "0,1С" означает, что аккумулятору ёмкостью 2700 мА*ч в такой схеме соответствует ток 270 мА (0,1*2700 = 270), а аккумулятору ёмкостью 1400 мА*ч – 140 мА.

Медленный заряд током 0,1C

Этот метод основан на том, что современные аккумуляторы легко выдерживают перезаряд (то есть попытку "залить" в них больше энергии, чем аккумулятор может хранить), если зарядный ток не превышает величины 0,1C. Если ток превышает эту величину, аккумулятор при перезаряде может выйти из строя.

Соответственно, слаботочное зарядное устройство не нуждается в каком-либо контроле окончания заряда: ничего страшного в избыточной его продолжительности нет, аккумулятор просто рассеет лишнюю энергию в виде тепла. Соответствующие зарядные устройства дёшевы и весьма широко распространены. Для зарядки аккумулятора достаточно оставить его в таком ЗУ на время не менее 1,6*C/I, где C – ёмкость аккумулятора, I – зарядный ток. Скажем, если мы берём ЗУ с током 200 мА, то аккумулятор ёмкостью 2700 мА*ч гарантированно зарядится за 1,6*2700/200 = 21 час 36 минут. Почти сутки... в общем, главный недостаток таких ЗУ очевиден – время зарядки зачастую превышает разумные величины.

Тем не менее, если вы никуда не торопитесь, такое зарядное устройство вполне имеет право на жизнь. Главное – если вы используете аккумуляторы малой ёмкости в паре с современным ЗУ, проверьте, чтобы ток зарядки (а он обязательно должен быть указан в характеристиках ЗУ) не превышал 0,1C. Также стоит учесть, что медленный заряд способствует проявлению у аккумуляторов эффекта памяти.

Заряд током 0,2...0,5С без контроля окончания заряда

Подобные зарядные устройства хоть и редко, но всё же встречаются – в основном среди дешёвой китайской продукции. При токе 0,2...0,5С они либо не имеют контроля окончания заряда вообще, либо имеют только встроенный таймер, выключающий аккумуляторы через заданное время.

Использовать подобные ЗУ категорически не рекомендуется : так как контроля окончания заряда нет, то в большинстве случаев аккумулятор окажется недо- или перезаряжен, что существенно сократит срок его жизни. Сэкономив на зарядном устройстве, вы потеряете деньги на аккумуляторах.

Заряд током до 1C с контролем окончания заряда

Этот класс зарядных устройств – наиболее универсален для повседневного применения: с одной стороны, они обеспечивают зарядку аккумуляторов за разумное время (от полутора до четырёх-шести часов, в зависимости от конкретного ЗУ и аккумуляторов), с другой, чётко контролируют окончание заряда в автоматическом режиме.

Наиболее часто встречающийся метод контроля окончания заряда – по спаду напряжения, обычно он называется "метод dV/dt", "метод отрицательной дельты" или "метод -ΔV". Заключается он в том, что в течение всей зарядки напряжение на аккумуляторе медленно растёт – но когда аккумулятор достигает полной ёмкости, оно кратковременно снижается. Это изменение очень небольшое, однако его вполне можно обнаружить – и, обнаружив, прекратить заряд.


Многие производители зарядных устройств также указывают в их характеристиках "микропроцессорный контроль" – но, по сути, это то же самое, что и контроль по отрицательной дельте: если он есть, то он осуществляется специализированным микропроцессором.

Впрочем, контроль по напряжению – не единственный доступный: в момент накопления аккумулятором полной ёмкости в нём резко возрастает давление и температура корпуса, что также можно контролировать. На практике, впрочем, технически проще всего измерять напряжение, поэтому другие методы контроля окончания заряда встречаются редко.

Также многие качественные зарядные устройства имеют два защитных механизма: контроль температуры аккумуляторов и встроенный таймер. Первый останавливает зарядку, если температура превысит допустимый предел, второй – если за разумное время остановка заряда по отрицательной дельте не сработала. И то, и другое может случиться, если мы используем старые или попросту некачественные аккумуляторы.

Закончив зарядку аккумуляторов большим током, наиболее "разумные" зарядные устройства ещё некоторое время дозаряжают их малым током (менее 0,1C) – это позволяет получить от аккумуляторов максимальную возможную ёмкость. Индикатор заряда на устройстве при этом обычно гаснет, показывая, что основная стадия зарядки закончена.

Проблем с подобными устройствами бывает две. Во-первых, не все из них способны с достаточной точностью "поймать" момент спада напряжения – но, увы, это проверить можно только опытным путём. Во-вторых, хотя такие устройства обычно рассчитаны на 2 или 4 аккумулятора, большинство из них не умеют заряжать эти аккумуляторы независимо друг от друга.

Например, если в инструкции к ЗУ указано, что оно может заряжать только 2 или 4 аккумулятора одновременно (но не 1 и не 3) – это значит, что оно имеет лишь два независимых канала заряда. Каждый из каналов обеспечивает напряжение около 3 В, а аккумуляторы включаются в них попарно-последовательно. Следствия из этого два. Очевидное заключается в том, что вы не сможете зарядить в подобном ЗУ одиночный аккумулятор (а, скажем, ваш покорный слуга ежедневно пользуется mp3-плеером, работающим именно от одного AAA-аккумулятора). Менее очевидное – в том, что контроль окончания заряда также осуществляется только для пары аккумуляторов. Если вы используете не слишком новые аккумуляторы, то просто из-за технологического разброса одни из них состарятся немного раньше других – и если в паре попались два аккумулятора с разной степенью старения, то такое ЗУ либо недозарядит один из них, либо перезарядит второй. Разумеется, это будет только усугублять темпы старения худшего из пары.

"Правильное" зарядное устройство должно позволять заряжать произвольное количество аккумуляторов – один, два, три или четыре – а в идеале, ещё и иметь для каждого из них отдельный индикатор окончания зарядки (в противном случае индикатор гаснет, когда зарядится последний из аккумуляторов). Только в таком случае у вас будут некоторые гарантии того, что каждый из аккумуляторов будет заряжен до полной ёмкости независимо от состояния остальных аккумуляторов. Отдельные индикаторы заряда позволяют также отлавливать преждевременно вышедшие из строя аккумуляторы: если из четырёх элементов, использовавшихся вместе, один заряжается значительно дольше или значительно быстрее остальных, значит, именно он и будет слабым звеном всей батареи.

Многоканальные зарядные устройства имеют и ещё одну приятную особенность: во многих из них при зарядке половинного количества аккумуляторов можно выбирать скорость заряда. Скажем, ЗУ Sanyo NC-MQR02, рассчитанное на четыре аккумулятора формата AA, при зарядке одного или двух аккумуляторов позволяет выбирать зарядный ток между 1275 мА (при установке аккумуляторов в крайние слоты) и 565 мА (при установке их в центральные слоты). При установке трёх или четырёх аккумуляторов они заряжаются током 565 мА.

Кроме удобства в эксплуатации, ЗУ данного типа являются и наиболее "полезными" для аккумуляторов: заряд током средней величины с контролем окончания заряда по отрицательной дельте является оптимальным с точки зрения увеличения срока жизни аккумуляторов.

Отдельный подкласс быстрых зарядных устройств – ЗУ с предварительным разрядом аккумуляторов. Сделано это для борьбы с эффектом памяти и может быть весьма полезно для Ni-Cd аккумуляторов: ЗУ проследит, чтобы сначала они были полностью разряжены, и только после этого начнёт заряд. Для современных Ni-MH такая тренировка уже не является обязательной.

Заряд током более 1C с контролем окончания заряда

И, наконец, последний метод – сверхбыстрый заряд, продолжительностью от 15 минут до часа, с контролем заряда опять же по отрицательной дельте напряжения. Достоинств у таких ЗУ два: во-первых, вы почти моментально получаете заряженные аккумуляторы, во-вторых, сверхбыстрый заряд позволяет в большой степени избежать эффекта памяти.

Есть, впрочем, и минусы. Во-первых, не все аккумуляторы хорошо выдерживают быстрый заряд: недостаточно качественные модели, имеющие большое внутреннее сопротивление, могут в таком режиме перегреваться вплоть до выхода из строя. Во-вторых, очень быстрый (15-минутный) заряд может негативно влиять на срок жизни аккумуляторов – опять же, из-за их избыточного нагрева при заряде. В-третьих, такой заряд "наполняет" аккумулятор лишь до 90...95 % ёмкости – после чего для достижения 100 % ёмкости требуется дополнительный дозаряд малым током (впрочем, большинство быстрых ЗУ его осуществляют).

Тем не менее, если вы нуждаетесь в сверхбыстрой зарядке аккумуляторов, приобретение "15-минутного" или "получасового" ЗУ будет хорошим выходом. Разумеется, использовать с ним надо только качественные аккумуляторы крупных производителей, а также своевременно исключать из батарей отслужившие своё экземпляры.

Если же вас устраивает продолжительность заряда в несколько часов, то оптимальными по-прежнему остаются описанные в предыдущем разделе ЗУ с зарядным током менее 1C и контролем окончания заряда по отрицательной дельте напряжения.

Отдельный вопрос – совместимость зарядных устройств с разными типами аккумуляторов. ЗУ для Ni-MH и Ni-Cd, как правило, универсальны: любое из них может заряжать аккумуляторы каждого из этих двух типов. ЗУ для Ni-MH аккумуляторов с окончанием заряда по отрицательной дельте напряжения, даже если для них это не заявлено прямо, могут работать и с Ni-Cd аккумуляторами, а вот наоборот – увы. Дело здесь в том, что скачок напряжения, та самая отрицательная дельта, у Ni-MH заметно меньше, чем у Ni-Cd, поэтому не всякое ЗУ, настроенное на работу с Ni-Cd, сможет "почувствовать" этот скачок на Ni-MH.

Для других же типов аккумуляторов, включая литий-ионные и свинцово-кислотные, эти ЗУ непригодны в принципе – такие аккумуляторы имеют совершенно другую схему заряда.

Методика тестирования

В процессе тестирования аккумуляторов и гальванических элементов в нашей лаборатории мы измеряем следующие их параметры, наиболее важные для определения как качества элементов (то есть их соответствия обещаниям производителя), так и разумной области использования:

ёмкость при различных режимах разряда;
величина внутреннего сопротивления;
величина саморазряда (только для аккумуляторов);
наличие эффекта памяти (только для аккумуляторов).

Основная часть испытательного стенда – это, разумеется, регулируемая нагрузка, позволяющая разряжать заданным током до четырёх аккумуляторов или батареек одновременно.


Для контроля напряжения всех четырёх элементов используется цифровой самописец Velleman PCS10, подключаемый к компьютеру по USB-интерфейсу. Погрешность измерения составляет не более 1 % (собственная погрешность самописца – 3 %, но мы дополнительно калибруем каждый из его каналов, внося соответствующие поправки в итоговые данные), дискретность измерения напряжений – 12 мВ, периодичность измерений – 250 мс.


Схема установки достаточно проста: это четыре отдельных стабилизатора тока, выполненных на операционном усилителе LM324 (эта микросхема как раз состоит из четырёх ОУ в одном корпусе) и полевых транзисторах IRL3502. Управляются все стабилизаторы одним многооборотным переменным резистором, поэтому ток на них выставляется одновременно – это упрощает настройку установки на конкретный тест и сводит к минимуму погрешность ручной установки тока. Возможные пределы изменения нагрузки – от 0 до 3 А на каждый элемент питания.

Для измерения напряжения на ещё одной микросхеме LM324 собраны четыре дифференциальных усилителя, входы которых подключены непосредственно к контактам колодки, в которую устанавливаются аккумуляторы – это полностью исключает погрешность, вносимую потерями на соединительных проводах. С выходов дифференциальных усилителей сигнал поступает на самописец.

Кроме того, в схеме присутствует не показанный на рисунке выше генератор прямоугольных импульсов, периодически то включающий, то полностью отключающий нагрузку. Длительность "нуля" на выходе генератора равна 6,0 с, длительность "единицы" – 2,25 с. Генератор позволяет протестировать элементы питания в режиме работы с импульсной нагрузкой и, в частности, определить их внутреннее сопротивление.

Также на рисунке выше не показана схема питания установки: она подключается к блоку питания компьютера, его выходное напряжение (+12 В) понижается до +9 В стабилизатором на микросхеме 78L09, а необходимое для двуполярного питания ОУ напряжение -9 В формируется емкостным конвертером на микросхеме ICL7660. Впрочем, это уже малосущественные нюансы, которые мы обсуждаем лишь затем, чтобы заранее предупредить вопросы о корректности проведения измерений, могущие возникнуть у сведущих в электронике читателей.

Для охлаждения силовых транзисторов, шунтов обратной связи и собственно тестируемых элементов питания вся установка обдувается стандартным 12-вольтовым вентилятором типоразмера 80x80x20 мм.


Для получения и автоматической обработки данных с самописца была написана специальная программа – к счастью, компания Velleman для многих своих приборов поставляет весьма простые в использовании SDK и наборы библиотек. Программа позволяет в реальном времени строить графики напряжения на элементах питания в зависимости от прошедшего с начала теста времени, а также рассчитывать – по окончании теста – их ёмкость. Последняя, очевидно, равна произведению разрядного тока и времени, за которое элемент достиг нижней границы напряжения.

Граница же выбирается в зависимости от типа элемента и условий разряда. Для аккумуляторов при малых токах это 1,0 В – ниже разряжать их просто нельзя, так как это может привести к необратимой порче элемента; на больших токах нижняя граница снижается до 0,9 В, чтобы должным образом учесть внутреннее сопротивление аккумулятора.

Для батареек практический смысл имеют две границы разряда. С одной стороны, элемент считается полностью опустошённым, если напряжение на нём упало до 0,7 В – поэтому логично измерять ёмкость именно по факту достижения этого уровня. С другой стороны, не все питающиеся от батареек устройства способны работать при напряжениях ниже 0,9 В, поэтому практическое значение имеет и то, когда аккумулятор разрядился до данного уровня. В наших тестах мы будем приводить оба этих значения – хотя многие элементы, достигнув уровня 1,0 В, дальше разряжаются очень быстро, есть и такие, которые сравнительно долго держатся между 0,7 В и 0,9 В.

Итак, установив элементы питания, выставив нужный ток и включив самописец, мы начинаем тестирование. Для каждого типа элементов питания были выбраны несколько режимов разрядки – с целью получить наиболее интересные и характерные результаты.

Для батареек это:

разрядка малым постоянным током: 250 мА для элементов формата АА, 100 мА – формата ААА;
разрядка большим постоянным током: 750 мА для элементов формата АА, 300 мА – формата ААА;

Для Ni-MH аккумуляторов это:

разрядка малым постоянным током: 500 мА для элементов формата АА, 200 мА – формата ААА;
разрядка большим постоянным током: 2500 мА для элементов формата АА, 1000 мА – формата ААА;
разрядка импульсным током: длительность импульса 2,25 с, длительность паузы 6,0 с, амплитуда тока 2500 мА для элементов формата АА и 1000 мА – формата ААА.

Для Ni-Cd аккумуляторов формата AA разрядные режимы выбраны такими же, как и для Ni-MH аккумуляторов формата AAA – с учётом схожей паспортной ёмкости первых и вторых.

Если при тестировании батареек всё просто – распечатал упаковку, вставил батарейку в установку, запустил тест – то аккумуляторы надо предварительно готовить, ибо все они, кроме упоминавшейся выше серии "Ready To Use", на момент покупки полностью разряжены. Поэтому тестирование аккумуляторов проводилось строго по следующей схеме;

измерение остаточной ёмкости на малом токе (только для "Ready To Use" моделей);
зарядка;
разрядка большим током без измерения ёмкости (тренировка);
зарядка;
разрядка большим током с измерением ёмкости;
зарядка;
разрядка импульсным током с измерением ёмкости;
зарядка;
разрядка малым током с измерением ёмкости;
зарядка;
выдержка в течение 7 суток;
разрядка малым током с измерением ёмкости – далее результат сравнивается с полученным на предыдущем шаге и рассчитывается процент потери ёмкости за счёт саморазряда за 1 неделю;

В тестах батареек мы используем на каждом этапе по одному элементу каждой марки. В тестах аккумуляторов – минимум по два элемента каждой марки.

Для зарядки аккумуляторов мы используем зарядное устройство Sanyo NC-MQR02.


Это ЗУ быстрой зарядки с контролем отрицательной дельты напряжения и температуры аккумуляторов, позволяющее заряжать от одного до четырёх (в произвольных комбинациях) аккумуляторов формата AA, а также один или два аккумулятора формата AAA. Первые можно заряжать как током 565 мА, так и 1275 мА (если аккумуляторов не более двух), вторые – током по 310 мА на элемент. За несколько лет регулярного использования это ЗУ убедительно доказало свою высокую эффективность и совместимость с любыми аккумуляторами, что и обусловило его выбор для проведения тестирования. Чтобы избежать потери ёмкости за счёт саморазряда, во всех тестах, кроме собственно теста на саморазряд, аккумуляторы заряжаются непосредственно перед началом измерений.


Измерения на постоянном токе дают логичную картину (пример представлен на графике выше): напряжение на элементах быстро снижается в первые минуты теста, потом выходит на более-менее постоянный уровень, а в самом конце теста, на последних процентах заряда, снова быстро падает.


Несколько менее банальны измерения на импульсном токе. На рисунке выше представлен сильно увеличенный участок графика, полученного в таком тесте: провалы напряжения на нём соответствуют включению нагрузки, подъёмы – отключению. Из этого графика легко подсчитать внутреннее сопротивление аккумулятора: как вы видите, при амплитуде тока 2,5 А напряжение проседает на 0,1 В – соответственно, внутреннее сопротивление равно 0,1/2,5 = 0,04 Ом = 40 мОм. Важность этого параметра станет более ясна из наших последующих статей, в которых мы сравним друг с другом различные типы батареек и аккумуляторов – а пока отметим лишь, что большое внутреннее сопротивление вызывает не только "просадку" напряжения под нагрузкой, но и потери накопленной в аккумуляторах энергии на нагрев самих себя.


В полном же масштабе импульсы сливаются друг с другом в сплошную полосу, верхняя граница которой соответствует напряжению на элементе питания без нагрузки, нижняя – с нагрузкой. По форме этой полосы можно оценить не только время работы элемента под тяжёлой импульсной нагрузкой, но и зависимость его внутреннего сопротивления от глубины разряда: например, как вы видите, у Ni-MH аккумулятора компании Sony сопротивление почти постоянно и начинает расти только при полном его разряде. Хороший результат.

Как наверняка заметят многие наши читатели, мы выбрали очень жёсткие режимы разряда: ток 2,5 А весьма велик, а 6-секундная пауза между импульсами не даёт элементу как следует "отдохнуть" (как мы уже упоминали выше, батарейки, немного "отлежавшись", могут частично восстановить свою ёмкость). Тем не менее, сделано это нарочно, чтобы максимально ярко и наглядно показать различия между элементами питания разных типов и разного качества. Для того же, чтобы приблизиться к более мягким реальным условиям эксплуатации, а также к условиям, в которых производители аккумуляторов измеряют их ёмкость, мы добавили в тестирование режимы разряда с относительно небольшим постоянным током.

К слову, сами производители обычно указывают разрядные режимы так же, как и зарядные – пропорционально ёмкости элемента. Скажем, штатные измерения ёмкости аккумуляторов положено проводить при токе 0,2C – то есть 540 мА для аккумулятора на 2700 мА*ч, 500 мА для аккумулятора на 2500 мА*ч, и так далее. Однако, так как аккумуляторы одного форм-фактора в наших тестах достаточно близки по характеристикам, мы решили тестировать их при фиксированных токах, не зависящих от паспортной ёмкости конкретного экземпляра – это сильно упрощает представление и сопоставление результатов.

И раз уж речь зашла о ёмкости, стоит упомянуть о некоторой обманчивости такой общепринятой единицы, как ампер-час. Дело в том, что запасённая в элементе питания энергия определяется не только тем, сколько времени он держал заданный ток, но и тем, какое на нём было при этом напряжение – так, совершенно очевидно, что литиевая батарея ёмкостью 3 А*ч и напряжением 3 В способна запасти вдвое больше энергии, чем батарея ёмкостью те же 3 А*ч, но напряжением 1,5 В. Поэтому правильнее указывать ёмкость не в ампер-часах, а в ватт-часах, получая их через интеграл зависимости напряжения на аккумуляторе от времени разряда при его постоянном токе. Кроме естественного учёта разного рабочего напряжения разных элементов, такая методика позволяет ещё и учесть, насколько хорошо данный конкретный элемент держал напряжение под нагрузкой. Скажем, если две батарейки разрядились до уровня 0,7 В за 60 минут, но первая большую часть этого времени держалась на уровне 1,1 В, а вторая – на уровне 0,9 В, совершенно очевидно, что первая имеет большую реальную ёмкость – несмотря на то, что итоговое время их разряда одинаково. Особенно это важно в свете того, что большинство современных электронных устройств потребляют не постоянный ток , а постоянную мощность – и элементы с большим напряжением в них будут работать в более выгодных режимах.

Ближе к практике: примеры энергопотребления

Разумеется, помимо абстрактного тестирования батареек на управляемой нагрузке, нам было интересно, как же потребляют ток реальные устройства. Для прояснения этого вопроса мы, оглядев окружающее пространство, случайным образом выбрали набор предметов, питающихся от различных батареек.



Только часть этого набора


В случае, если устройство потребляло более-менее постоянный ток, измерения проводились обычным цифровым мультиметром Uni-Trend UT70D в режиме амперметра. Если же ток потребления сильно менялся, то измеряли мы его, включив между устройством и питающими его батарейками низкоомный шунт, падение напряжения на котором фиксировалось осциллографом Velleman PCSU1000.

Результаты представлены ниже в таблице:


Что же, среди наших устройств встретились и довольно "прожорливые" – фотовспышка, фотоаппарат и фонарь с лампой накаливания. Если последний потреблял положенные ему 700 мА постоянно и непрерывно, то у первых двух характер энергопотребления оказался более интересным.

Цена вертикального деления на осциллограммах ниже равна 200 мА, нуль соответствует первому делению снизу.



Фотоаппарат
Цена деления осциллограммы – 200 мА


В обычном режиме Canon PowerShot A510, питающийся от двух элементов типа АА, потреблял около 800 мА – немало, но и не рекордно много. Однако при включении (первая группа узких пиков на осциллограмме), движение объектива (вторая группа пиков) и фокусировке (третья группа) ток мог вырастать более чем в полтора раза, до 1,2...1,4 А. Что интересно, сразу после нажатия на "спуск" энергопотребление фотоаппарата упало – при записи только что снятого кадра на флэшку он автоматически выключает экран. Впрочем, как только кадр был записан, потребление поднялось обратно до 800 мА.



Фотовспышка
Цена деления осциллограммы – 100 мА


Фотовспышка Pentax AF-500FTZ (четыре элемента формата АА) потребляла ток ещё интереснее: он был почти равен нулю в периоды между срабатываниями, мгновенно вырастал до 700 мА сразу после срабатывания (такой момент и запечатлён на осциллограмме выше), после чего в течение 10...15 секунд плавно снижался обратно к нулю (рваная линия осциллограммы получилась из-за того, что вспышка потребляет ток с частотой около 6 кГц). При этом вспышка демонстрировала чёткую зависимость между временем спада тока и напряжением питающих её элементов: так как ей надо было каждый раз накопить определённую энергию, то чем сильнее проседало под нагрузкой напряжение питания, тем больше времени требовалось для накопления нужного запаса. Это, кстати, хорошо иллюстрирует одну из ролей внутреннего сопротивления элементов питания – чем оно меньше, тем меньше при прочих равных просядет напряжение и тем быстрее вы сможете сделать следующий кадр со вспышкой.

В следующих же наших статьях, где мы будем рассматривать уже конкретные типы и экземпляры батареек и аккумуляторов, примерное представление об энергетических потребностях разных устройств поможет нам определить, какие из элементов питания для них подходят.